The smart grid is not a monolithic system, but rather is a collection of several renewable energy resources and enabling technologies in which, intelligent control is an integral part of its mechanism to improve the utilization of assets. The dynamic characteristics of a smart grid upgrade the conventional system requirements using advanced control strategies to provide continuous power to the load from intermittent renewable generation. The communication networks and control systems that enable the accommodation of distributed generation are crucial technologies in monitoring, protecting, and operating the smart grid in a centralized or decentralized manner. This paper improves the earlier published review articles by exploring the evolution of smart grids in light of renewable energy penetration with associated features. Then, the review gives an overview of notable research works in the literature aimed at developing the management and control of smart energy systems. The reader is provided with an indepth analysis of advanced cloud computing, the internet of things, and blockchain technology with real examples for the related renewable energy projects in smart cities. Furthermore, a special interest has been paid to quantify the performance of communication technologies along with the protocols through the conceptual investigation of real cases using the optimized network engineering tools. The outcomes of the presented review can assist researchers to understand the driving mechanism of smart grid as a route to intelligently utilize renewable energy storage. It is concluded that the amalgamation of blockchain and artificial intelligence for renewable energy management is the key area where the avenue is still open for future research studies.