In a previous paper [1], a preliminary design methodology was proposed for the design of an axial turbine, replacing a conventional radial turbine used in automotive turbochargers, to achieve improved transient response, due to the intrinsically lower moment of inertia. In this second part of the work, the focus is on the optimisation of this preliminary design to improve on the axial turbine efficiency using a genetic algorithm in order to make the axial turbine a more viable proposition for turbocharger turbine application. The implementation of multidisciplinary design optimisation is essential to the aerodynamic shape optimisation of turbocharger turbines, as changes in blade geometry lead to variations in both structural and aerodynamics performance. Due to the necessity to have multiple design objectives and a significant number of variables, genetic algorithms seem to offer significant advantages. However, large generation sizes and simulation run times could result in extensively long periods of time for the optimisation to be completed. This paper proposes a dimensioning of a multi-objective genetic algorithm, to improve on a preliminary blade design in a reasonable amount of time. The results achieved a significant improvement on safety factor of both blades whilst increasing the overall efficiency by 2.55%. This was achieved by testing a total of 399 configurations in just over 4 h using a cluster network, which equated to 2.73 days using a single computer.