The aero-thermal coupled phenomenon is significant in the modern cooled turbine, and it is necessary to consider the cooling effect and predict the coolant requirement in the through-flow design. A new cooling model was developed for the aero-thermal coupled through-flow method in this paper to predict the temperatures of both the pressure and suction surfaces of the blade. Based on the given blade temperature limitation rather than the mean blade surface temperature in the formal cooling model, the coolant requirement prediction can be more accurate. The equivalent blade thickness and heat exchange area estimation methods were further developed for blades with different cooling structures, and the estimations were carried out for each calculation station instead of the whole blade. The cooled blade was divided into a few calculation stations, and the heat transfer was studied for each station. Three operating conditions for the NASA-Mark II vane were selected for the verification. The predicted temperatures of both the pressure and suction surfaces agree with the experimental data, and the calculation results for the subsonic conditions are more accurate than the one for the transonic conditions.
Cooling technology is widely applied in modern turbines to protect the turbine blades, and extracting high-pressure cooling air from a compressor exerts a remarkable influence on the gas-turbine performance. However, the three-dimensional optimal design of a turbine in modern industrial practice is usually carried out by pursuing high component efficiency without considering possible changes in coolant requirement; hence, it may not exactly lead to improvement in the gas-turbine cycle efficiency. In this study, the turbine stator was twisted and leaned to achieve higher comprehensive efficiency, which is the cycle-based efficiency definition for a cooled turbine that considers both turbine aerodynamic performance and coolant requirement. First, the influence of twist and compound lean on turbine aerodynamic performance, considering stator-hub leakage, was investigated. Then, a method to predict the coolant requirement for turbines with different stator designs was applied, to evaluate coolant-requirement change at the design condition. The optimized turbines were finally compared to demonstrate the necessity of considering the coolant-requirement change in the optimal design. This indicated that proper twisting to open the throat area in the stator hub and compound lean to the pressure surface side could help improve the cooled-turbine comprehensive efficiency.
The aero-thermal-coupled phenomenon is significant in modern cooled turbines, and an aero-thermal coupled throughflow method has previously been developed by the authors for considering the influence of heat transfer and coolant mixing in through-flow design. However, the original cooling model is not capable of calculating the distribution of the coolant mass flow rate and pressure loss in complex cooling structures. Therefore, in this paper, a one-dimensional flow calculation for the internal coolant is introduced into the heat transfer calculation to further improve the through-flow cooling model. Based on various empirical correlations, the cooling model can be used to simulate different cooling structures, such as ribbed channels and cooling holes. Three operating conditions were selected for verification of the NASA-C3X vane, which has 10 internal radial cooling channels. The calculated Nusselt number of internal cooling channels strongly agrees with the experimental data, and the predicted blade surface pressure and temperature distributions at mid span are also in good agreement with the experimental data. The convergence history of the meridional velocity and blade surface temperature demonstrates effective convergence properties. Therefore, the aero-thermalcoupled through-flow method with the new cooling model can provide a reliable tool for cooled turbine through-flow design and analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.