In cloud manufacturing, customers register customized requirements, and manufacturers provide appropriate services to complete the task. A cloud manufacturing manager establishes manufacturing schedules that determine the service provision time in a real-time manner as the requirements are registered in real time. In addition, customer satisfaction is affected by various measures such as cost, quality, tardiness, and reliability. Thus, multiobjective and real-time scheduling of tasks is important to operate cloud manufacturing effectively. In this paper, we establish a mathematical model to minimize tardiness, cost, quality, and reliability. Additionally, we propose an approach to solve the mathematical model in a real-time manner using a multiobjective genetic algorithm that includes chromosome representation, fitness function, and genetic operators. From the experimental results, we verify whether the proposed approach is effective and efficient.