This paper focuses on the design, analysis, and multi-objective optimization of a novel 5-degrees of freedom (DOF) double-driven parallel mechanism. A novel 5-DOF parallel mechanism with two double-driven branch chains is proposed, which can serve as a machine tool. By installing two actuators on one branch chain, the proposed parallel mechanism can achieve 5-DOF of the moving platform with only three branch chains. Afterwards, analytical solution for inverse kinematics is derived. The 5
$\times$
5 homogeneous Jacobian matrix is obtained by transforming actuator velocities into linear velocities at three points on the moving platform. Meanwhile, the workspace, dexterity, and volume are analyzed based on the kinematic model. Ultimately, a stage-by-stage Pareto optimization method is proposed to solve the multi-objective optimization problem of this parallel mechanism. The optimization results show that the workspace, compactness, and dexterity of this mechanism can be improved efficiently.