2023
DOI: 10.3389/fenrg.2023.1213154
|View full text |Cite
|
Sign up to set email alerts
|

Multi-objective reactive power optimization strategy of power system considering large-scale renewable integration

Abstract: To fully tap the abilities of renewables in reactive power optimization, this paper develops a detailed model for the power regulation capabilities of wind turbines and photovoltaic units and studies their impact on the power system’s operation. First, the power system model with renewables integration is established using AC power flow. The wind turbines and photovoltaic units are modeled in detail according to their topologies and operating characteristics, and then further simplified according to the feasib… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 22 publications
0
1
0
Order By: Relevance
“…As optimization problems continue to evolve, new techniques encompassing artificial intelligence, as well as the metaheuristic search-based optimization approaches were designed to tackle the D-OPF problem. Recent efforts focused on search-based optimization approaches, which include the genetic algorithm (GA) optimization method [10], particle swarm optimizer (PSO) method [11,12], differential evolution optimization method [13,14], enhanced genetic algorithms optimization method [15], gravitational searching algorithm (GSA) method [16,17], multi-phase searching optimization algorithm [18,19], improving colliding bodies method [20], improved PSO method [21], biogeography-based optimizing approach [22], fuzzy-based hybrid PSO method [23], blackhole optimization approach [24], imperialist competitive optimization algorithm [25], harmony search optimization algorithm [26], PSO hybrid with GSA method [27], grey wolf optimization technique [28], and bee colony optimization approach [29]. Additionally, many multi-objective functions have been introduced for the D-OPF in [30,31].…”
Section: Introductionmentioning
confidence: 99%
“…As optimization problems continue to evolve, new techniques encompassing artificial intelligence, as well as the metaheuristic search-based optimization approaches were designed to tackle the D-OPF problem. Recent efforts focused on search-based optimization approaches, which include the genetic algorithm (GA) optimization method [10], particle swarm optimizer (PSO) method [11,12], differential evolution optimization method [13,14], enhanced genetic algorithms optimization method [15], gravitational searching algorithm (GSA) method [16,17], multi-phase searching optimization algorithm [18,19], improving colliding bodies method [20], improved PSO method [21], biogeography-based optimizing approach [22], fuzzy-based hybrid PSO method [23], blackhole optimization approach [24], imperialist competitive optimization algorithm [25], harmony search optimization algorithm [26], PSO hybrid with GSA method [27], grey wolf optimization technique [28], and bee colony optimization approach [29]. Additionally, many multi-objective functions have been introduced for the D-OPF in [30,31].…”
Section: Introductionmentioning
confidence: 99%