Centrifugal blowers are widely used in different industrial applications nuclear and petrochemical, which are proficient of as long as restrained to high pressure rise and flow rates. Design of such impellers is important with noise reduction and maximum efficiency. In present work, an experimental and numerical analysis is done to study the effect of impeller blade thickness and rotating speed on the performance of the impeller. Different blade thickness has been considered with different rotating speed. A modal analysis is done for the numerical study using commercial software ANSYS Workbench. The numerical results are validated with experimental results found in test. The six different mode shapes are found in numerical study. The natural frequency and the total deformation is calculated for different blade thickness and rotating speed. The results shows that, the blade with 1.5 mm thickness has a reduced noise and vibrations with maximum rotating speed.