BackgroundMicrofluidics is a science and technology that precisely manipulates and processes microscale fluids. It is commonly used to precisely control microfluidic (10 −9 to 10 −18 L) fluids using channels that range in size from tens to hundreds of microns and is known as a "lab-on-a-chip" [1][2][3][4]. The microchannel is small, but has a large surface area and high mass transfer, favoring its use in microfluidic technology applications including low regent usage, controllable volumes, fast mixing speeds, rapid responses, and precision control of physical and chemical properties [1,5,6]. Microfluidics integrate sample preparation, reactions, separation, detection, and basic operating units such as cell culture, sorting and cell lysis [7]. For these reasons, interest in OOAC has intensified [8]. OOAC combines a range of chemical, biological and material science disciplines [9] and was selected as one of the "Top Ten Emerging Technologies" in the World Economic Forum [10].OOAC is a biomimetic system that can mimic the environment of a physiological organ, with the ability to regulate key parameters including
AbstractThe organ-on-a-chip (OOAC) is in the list of top 10 emerging technologies and refers to a physiological organ biomimetic system built on a microfluidic chip. Through a combination of cell biology, engineering, and biomaterial technology, the microenvironment of the chip simulates that of the organ in terms of tissue interfaces and mechanical stimulation. This reflects the structural and functional characteristics of human tissue and can predict response to an array of stimuli including drug responses and environmental effects. OOAC has broad applications in precision medicine and biological defense strategies. Here, we introduce the concepts of OOAC and review its application to the construction of physiological models, drug development, and toxicology from the perspective of different organs. We further discuss existing challenges and provide future perspectives for its application.