Abstract:In this paper, our concern is to design some criteria for deterministic remote state preparation for preparing an arbitrary three-particle state via a genuinely entangled six-qubit state. First, we put forward two schemes in both the real and complex Hilbert space, respectively. Using an appropriate set of eight-qubit measurement basis, the remote three-qubit preparation is completed with unit success probability. Departing from previous research, our protocol has a salient feature in that the serviceable measurement basis only contains the initial coefficients and their conjugate values. By utilizing the permutation group, it is convenient to provide the permutation relationship between coefficients. Second, our ideas and methods can also be generalized to the situation of preparing an arbitrary N-particle state in complex case by taking advantage of Bell states as quantum resources. More importantly, criteria satisfied conditions for preparation with 100% success probability in complex Hilbert space is summarized. Third, the classical communication costs of our scheme are calculated to determine the classical recourses required. It is also worth mentioning that our protocol has higher efficiency and lower resource costs compared with the other papers.