We aimed to evaluate whether radiomic feature-based fluorine 18 (18F) fluorodeoxyglucose (FDG) positron emission tomography (PET) imaging signatures allow prediction of gastric cancer (GC) survival and chemotherapy benefits.Methods: A total of 214 GC patients (training (n = 132) or validation (n = 82) cohort) were subjected to radiomic feature extraction (80 features). Radiomic features of patients in the training cohort were subjected to a LASSO cox analysis to predict disease-free survival (DFS) and overall survival (OS) and were validated in the validation cohort. A radiomics nomogram with the radiomic signature incorporated was constructed to demonstrate the incremental value of the radiomic signature to the TNM staging system for individualized survival estimation, which was then assessed with respect to calibration, discrimination, and clinical usefulness. The performance was assessed with concordance index (C-index) and integrated Brier scores.Results: Significant differences were found between the high- and low-radiomic score (Rad-score) patients in 5-year DFS and OS in training and validation cohorts. Multivariate analysis revealed that the Rad-score was an independent prognostic factor. Incorporating the Rad-score into the radiomics-based nomogram resulted in better performance (C-index: DFS, 0.800; OS, 0.786; in the training cohort) than TNM staging system and clinicopathologic nomogram. Further analysis revealed that patients with higher Rad-scores were prone to benefit from chemotherapy.Conclusion: The newly developed radiomic signature was a powerful predictor of OS and DFS. Moreover, the radiomic signature could predict which patients could benefit from chemotherapy.
Background:
To evaluate whether radiomic feature-based computed tomography (CT) imaging signatures allow prediction of lymph node (LN) metastasis in gastric cancer (GC) and to develop a preoperative nomogram for predicting LN status.
Methods:
We retrospectively analyzed radiomics features of CT images in 1,689 consecutive patients from three cancer centers. The prediction model was developed in the training cohort and validated in internal and external validation cohorts. Lasso regression model was utilized to select features and build radiomics signature. Multivariable logistic regression analysis was utilized to develop the model. We integrated the radiomics signature, clinical T and N stage, and other independent clinicopathologic variables, and this was presented as a radiomics nomogram. The performance of the nomogram was assessed with calibration, discrimination, and clinical usefulness.
Results:
The radiomics signature was significantly associated with pathological LN stage in training and validation cohorts. Multivariable logistic analysis found the radiomics signature was an independent predictor of LN metastasis. The nomogram showed good discrimination and calibration.
Conclusions:
The newly developed radiomic signature was a powerful predictor of LN metastasis and the radiomics nomogram could facilitate the preoperative individualized prediction of LN status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.