With recent industrial upgrades, it is essential to transform the current forward supply networks (FSNs) into closed-loop supply networks (CLSNs), which are formed by the integration of forward and reverse logistics. The method chosen in this paper for building reverse logistics is to add additional functions to the existing forward logistics. This process can be regarded as adding reverse edges to the original directed edges in an FSN. Due to the limitation of funds and the demand for reverse flow, we suppose that a limited number of reverse edges can be built in a CLSN. To determine the transformation schemes with excellent robustness against malicious attacks, this paper proposes a multi-population evolutionary algorithm with novel operators to optimize the robustness of the CLSN, and this algorithm is abbreviated as MPEA-RSN. Then, both the generated and realistic SNs are taken as examples to validate the effectiveness of MPEA-RSN. The simulation results show that the index R, introduced to evaluate the robustness of CLSNs, can be improved by more than 95%, and this indicates that (1) the different schemes for adding reverse routes to an FSN can lead to different robustness values, and (2) the robustness of the transformed CLSN to malicious attacks can be significantly improved after optimization by MPEA-RSN. When an FSN is to be transformed into a CLSN, this paper can provide a frame of reference for building a CLSN that is robust to malicious attacks from a network structural perspective.