2022
DOI: 10.32604/cmc.2022.026999
|View full text |Cite
|
Sign up to set email alerts
|

Multi-Scale Attention-Based Deep Neural Network for Brain Disease Diagnosis

Abstract: Whole brain functional connectivity (FC) patterns obtained from resting-state functional magnetic resonance imaging (rs-fMRI) have been widely used in the diagnosis of brain disorders such as autism spectrum disorder (ASD). Recently, an increasing number of studies have focused on employing deep learning techniques to analyze FC patterns for brain disease classification. However, the high dimensionality of the FC features and the interpretation of deep learning results are issues that need to be addressed in t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
4
2

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(2 citation statements)
references
References 41 publications
0
2
0
Order By: Relevance
“…The widely utilized atlas is the automatic anatomical labeling (AAL) atlas (Tzourio-Mazoyer et al, 2002 ; Guo and Zhang, 2020 ; Ji and Yao, 2021 ; Pang et al, 2021 ; Wang et al, 2021 , 2022b ; Alorf and Khan, 2022 ; Cai et al, 2022 ; Hu et al, 2022 ; Lu et al, 2022 ; Wang T. et al, 2022 ; Chen et al, 2023 ). Besides, FC can be constructed by other atlases, such as the Power atlas (Power et al, 2011 ; Xu et al, 2020 ), Craddock 200 atlas (Craddock et al, 2011 ; Huang et al, 2021 ; Liang et al, 2021 , 2022 ), Bootstrap Analysis of Stable Clusters (Bellec et al, 2010 ; Subah et al, 2021 ; Wang N. et al, 2022 ), Brainnetome atlas (Fan et al, 2016 ; Jin et al, 2020 ), Yeo atlas (Yeo et al, 2011 ; Gullett et al, 2021 ), Harvard-Oxford atlas (Desikan et al, 2006 ; Cao et al, 2020 ), and Dosenbach atlas (Dosenbach et al, 2010 ; Zhao et al, 2022 ). In particular, Zhang et al ( 2022 ) constructed multiple FCNs based on the selected set of the atlas from generated multiple personalized atlases from the AAL atlas to improve the diagnosis effect of MCI.…”
Section: Features Extracted From Fmri Datamentioning
confidence: 99%
“…The widely utilized atlas is the automatic anatomical labeling (AAL) atlas (Tzourio-Mazoyer et al, 2002 ; Guo and Zhang, 2020 ; Ji and Yao, 2021 ; Pang et al, 2021 ; Wang et al, 2021 , 2022b ; Alorf and Khan, 2022 ; Cai et al, 2022 ; Hu et al, 2022 ; Lu et al, 2022 ; Wang T. et al, 2022 ; Chen et al, 2023 ). Besides, FC can be constructed by other atlases, such as the Power atlas (Power et al, 2011 ; Xu et al, 2020 ), Craddock 200 atlas (Craddock et al, 2011 ; Huang et al, 2021 ; Liang et al, 2021 , 2022 ), Bootstrap Analysis of Stable Clusters (Bellec et al, 2010 ; Subah et al, 2021 ; Wang N. et al, 2022 ), Brainnetome atlas (Fan et al, 2016 ; Jin et al, 2020 ), Yeo atlas (Yeo et al, 2011 ; Gullett et al, 2021 ), Harvard-Oxford atlas (Desikan et al, 2006 ; Cao et al, 2020 ), and Dosenbach atlas (Dosenbach et al, 2010 ; Zhao et al, 2022 ). In particular, Zhang et al ( 2022 ) constructed multiple FCNs based on the selected set of the atlas from generated multiple personalized atlases from the AAL atlas to improve the diagnosis effect of MCI.…”
Section: Features Extracted From Fmri Datamentioning
confidence: 99%
“…Chemicals, head injuries, and genetic environmental factors are some of most important causes of AD. Behavior and mood instability, communication and recognition problems, learning issues, and memory loss are common signs of AD [8][9][10][11]. It triggers brain cell death, resulting in thinking, memory, and cognitive impairment.…”
Section: Introductionmentioning
confidence: 99%