Injection of imbibition fluids or CO2 during hydraulic fracturing is an effective stimulation method for tight oil reservoirs. Selecting appropriate agents is significant to optimize the integrated scheme of fracturing and production in tight oil reservoirs. In this study, a series of lab experiments, including spontaneous imbibition, dynamic imbibition, and huff and puff, were carried out using real tight cores, water absorption apparatus, and core flooding equipment. The EOR performances of imbibition fluids and CO2 in fractured tight cores were compared. The mass transfer of imbibition fluids and CO2 in tight oil reservoirs and its influence on the sweeping volume and EOR mechanisms were discussed. The results show that (1) the spontaneous imbibition rate of imbibition fluids in tight cores is slow, and the oil recovery factor by spontaneous imbibition in cracked cores is relatively high, up to 13.42%. (2) In the dynamic imbibition experiments, the final oil recovery by CO2 injection was significantly higher than that by injecting imbibition liquids. Because of the excellent miscibility effect of CO2, oil production by CO2 injection mainly occurred in the primary displacement stage. Comparatively, the EOR effect of imbibition fluids mainly played its role during production after well shut-in, which can increase the oil recovery factor by 7.35%-11.64%. (3) The influence of the huff and puff mode of CO2 on EOR performance is greater than that of imbibition fluids due to its more sensitive compressibility and mass transfer rate. Generally, a high oil recovery factor can be obtained if the depletion production is conducted first, and a huff and puff operation is followed. (4) Comprehensively understanding the mass transfer characteristics of CO2 and imbibition fluids in tight oil reservoirs can guide the fracturing parameter design, such as the order of fracturing fluid slugs, the optimal soak time, and fracture spacing.