Multipartite secret sharing schemes are those that have multipartite access structures. The set of the participants in those schemes is divided into several parts, and all the participants in the same part play the equivalent role. One type of such access structure is the compartmented access structure, and the other is the hierarchical access structure. We propose an efficient compartmented multisecret sharing scheme based on the linear homogeneous recurrence (LHR) relations. In the construction phase, the shared secrets are hidden in some terms of the linear homogeneous recurrence sequence. In the recovery phase, the shared secrets are obtained by solving those terms in which the shared secrets are hidden. When the global threshold is
t
, our scheme can reduce the computational complexity of the compartmented secret sharing schemes from the exponential time to polynomial time. The security of the proposed scheme is based on Shamir’s threshold scheme, i.e., our scheme is perfect and ideal. Moreover, it is efficient to share the multisecret and to change the shared secrets in the proposed scheme.