Scientifically evaluating the influence of ecological restoration projects on the water conservation function (WCF) of regional ecosystems is the foundation for formulating regional ecological restoration policies and optimizing and adjusting ecological restoration projects. In this paper, we considered fully the runoff generation and confluence process in the Qilian Mountains with the actual situation of the basin and re-rated the parameter Z to improve the simulation accuracy of InVEST model. On this basis, the impact of ecological restoration project on the WCF in the upper reaches of Shiyang River Basin (SRB) in the eastern part of Qilian Mountains was quantified. The results showed that, on the whole, the water conservation depth (WCD) of forest land was the largest (138.5 mm) and that of cultivated land was the smallest (24.78 mm), while the water conservation coefficient of forest land was also the largest (93.36%) and that of unused land was the smallest (16.67%). From 1986 to 2018, the WCD showed an increasing trend in the upper reaches of SRB, among them, the WCD in the western tributaries increased faster than that in the eastern tributaries from 1986 to 2000. The significantly increased areas were mainly distributed in the middle reaches of the western tributaries and the river source areas of the eastern tributaries, while the significantly decreased areas were mainly distributed in the river source areas of the western tributaries and the cultivated land expansion area in the middle reaches of the eastern tributaries. From 2000 to 2018, the WCD of the eastern tributaries increased more than that of the western tributaries. The significantly increased areas were mainly distributed in the four eastern tributaries, and the significantly decreased areas were scattered in the middle and lower reaches of each tributary. From 1986 to 2000, the overall influence of land use change on the increase in WCD was negative, while the influence of climate and land use change on the increase in water conservation were both positive from 2000 to 2018. The influence of land use change on WCD was different in different tributaries. Among them, that of the western tributaries (except the Dongda River) was positive in two different periods, while that of the eastern tributaries (except the Xiying River) was changed from negative to positive. The implementation of ecological restoration project was one of the main reasons for the improvement of WCF in Qilian Mountains from 2000 to 2018, with a contribution of 9.04%. In the future, the protection and restoration of decreased areas of WCF should be strengthened, and the Z value determined in this paper is expected to be applied in the arid inland river basins of northwest China.