Advances in next-generation sequencing technology along with decreasing costs now allow the microbial population, or microbiome, of a location to be determined relatively quickly. This research reveals that microbial communities are more diverse and complex than ever imagined. New and specialized instrumentation is required to investigate, with high spatial and temporal resolution, the dynamic biochemical environment that is created by microbes, which allows them to exist in every corner of the Earth. This review describes how electrochemical probes and techniques are being used and optimized to learn about microbial communities. Described approaches include voltammetry, electrochemical impedance spectroscopy, scanning electrochemical microscopy, separation techniques coupled with electrochemical detection, and arrays of complementary metal-oxide-semiconductor circuits. Microbial communities also interact with and influence their surroundings; therefore, the review also includes a discussion of how electrochemical probes optimized for microbial analysis are utilized in healthcare diagnostics and environmental monitoring applications.