Asthma is a complex disease that affects millions of people and varies in prevalence by an order of magnitude across geographic regions and populations. However, the extent to which genetic variation contributes to these disparities is unclear, as studies probing the genetics of asthma have been primarily limited to populations of European (EUR) descent. As part of the Global Biobank Meta-analysis Initiative (GBMI), we conducted the largest genome-wide association study of asthma to date (153,763 cases and 1,647,022 controls) via meta-analysis across 18 biobanks spanning multiple countries and ancestries. Altogether, we discovered 180 genome-wide significant loci (p < 5x10-8) associated with asthma, 49 of which are not previously reported. We replicate well-known associations such as IL1RL1 and STAT6, and find that overall the novel associations have smaller effects than previously-discovered loci, highlighting our substantial increase in statistical power. Despite the considerable range in prevalence among biobanks, from 3% to 24%, the genetic effects of associated loci are largely consistent across the biobanks and ancestries. To further investigate the polygenic architecture of asthma, we construct polygenic risk scores (PRS) using a multi-ancestry approach, which yields higher predictive power for asthma in non-EUR populations compared to PRS derived from previous asthma meta-analyses and using other methods. Additionally, we find considerable genetic overlap between asthma and chronic obstructive pulmonary disease (COPD) across ancestries but minimal overlap in enriched biological pathways. Our work underscores the multifactorial nature of asthma development and offers insight into the shared genetic architecture of asthma that may be differentially perturbed by environmental factors and contribute to variation in prevalence.