The interplay between environmental and genetic factors plays a key role in the development of many autoimmune diseases. In particular, the Epstein–Barr virus (EBV) is an established contributor to multiple sclerosis, lupus, and other disorders. Previously, we showed that the EBV nuclear antigen 2 (EBNA2) transactivating protein occupies up to half of the risk loci for a set of seven autoimmune disorders. To further examine the mechanistic roles played by EBNA2 at these loci on a genome-wide scale, we globally examined gene expression, chromatin accessibility, chromatin looping, and EBNA2 binding in a B cell line that was (1) uninfected, (2) infected with a strain of EBV lacking EBNA2, or (3) infected with a strain that expresses EBNA2. We identified more than 400 EBNA2-dependent differentially expressed human genes and more than 5000 EBNA2 binding events in the human genome. ATAC-seq analysis revealed more than 2000 regions in the human genome with EBNA2-dependent chromatin accessibility, and HiChIP data revealed more than 1700 regions where EBNA2 altered chromatin looping interactions. Autoimmune genetic risk loci were highly enriched at the sites of these EBNA2-dependent chromatin-altering events. We present examples of autoimmune risk genotype–dependent EBNA2 events, nominating genetic risk mechanisms for autoimmune risk loci such as ZMIZ1. Taken together, our results reveal important interactions between host genetic variation and EBNA2-driven disease mechanisms. Further, our study highlights a critical role for EBNA2 in rewiring human gene regulatory programs through rearrangement of the chromatin landscape and nominates these interactions as components of genetic mechanisms that influence the risk of multiple autoimmune diseases.
CpG) award. M.T.W. is supported by the NIH (grant no. R01 NS099068), a Cincinnati Children's Research Foundation Endowed Scholar Award, and a CCHMC CpG award. M.E.R.'s work is funded by the NIH (grant nos. R37 AI045898, U19 AI070235, R01 AI057803, R01 HG010730, and R01 AR073228); the Campaign Urging Research for Eosinophilic Disease; and the Sunshine Charitable Foundation and its supporters, Denise and David Bunning. This study was originally funded by the Consortium of Food Allergy Researchers (COFAR, National Institute of Allergy and Infectious Diseases grant no. U19AI066738). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Disclosure of potential conflict of interest: V. Mukkada is a consultant for Shire, a Takeda company. T. Wen is a coinventor of the EoE diagnostic panel, a patent owned by Cincinnati Children's Hospital Medical Center, and serves as a consultant for NanoString Technologies, Inc, and a consultant committee member for GlaxoSmithKline. M. E. Rothenberg is a consultant for Pulm One, Spoon Guru, ClostraBio, Serpin Pharm, Allakos, Celgene, Astra Zeneca, Arena Pharmaceuticals, Guidepoint, and Suvretta Capital Management; has an equity interest in the first 5 listed and royalties from reslizumab (Teva Pharmaceuticals), PEESSv2 (Mapi Research Trust), and UpToDate; and is an inventor of patents owned by Cincinnati Children's Hospital Medical Center. The rest of the authors declare that they have no relevant conflicts of interest.
The interplay between environmental and genetic factors plays a key role in the development of many autoimmune diseases. In particular, the Epstein-Barr virus (EBV) is an established contributor to multiple sclerosis, lupus, and other disorders. Previously, we demonstrated that the EBV nuclear antigen 2 (EBNA2) transactivating protein occupies up to half of the risk loci for a set of seven autoimmune disorders. To further examine the mechanistic roles played by EBNA2 at these loci on genome-wide scale, we globally examined gene expression, chromatin accessibility, chromatin looping, and EBNA2 binding, in a B cell line that was 1) uninfected, 2) infected with a strain of EBV lacking EBNA2, or 3) infected with a strain that expresses EBNA2.We identified >400 EBNA2-dependent differentially expressed human genes and >4,000 EBNA2 binding events in the human genome. ATAC-seq analysis revealed >3,000 regions in the human genome with EBNA2-dependent chromatin accessibility, and HiChIP-seq data revealed >2,000 regions where EBNA2 altered chromatin looping interactions. Importantly, autoimmune genetic risk loci were highly enriched at the sites of these EBNA2-dependent chromatin-altering events.We present examples of autoimmune risk genotype-dependent EBNA2 events, nominating genetic risk mechanisms for autoimmune risk loci such as ZMIZ1 and CD80. Taken together, our results reveal important interactions between host genetic variation and EBNA2-driven disease mechanisms. Further, our study highlights a critical role for EBNA2 in rewiring human gene regulatory programs through rearrangement of the chromatin landscape and nominates these interactions as components of genetic mechanisms that influence the risk of multiple autoimmune diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.