Aims. Stellar activity produced by spots and plages affects the radial velocity (RV) signatures. Because even low activity stars would produce such a signal, it is crucial to determine how it influences our ability to detect small planetary signals such as those produced by Earth-mass planets in the habitable zone (HZ). In a recent paper, we investigated the impact of sunlike spots. We aim here to investigate the additional impact of plages. Methods. We used the spot and plage properties over a solar cycle to derive the RV that would be observed if the Sun was seen edgeon. The RV signal comes from the photometric contribution of spots and plages and from the attenuation of the convective blueshift in plages. We analyzed the properties of the RV signal at different activity levels and compared it with commonly used activity indicators such as photometry and the Ca index. We also compared it with the signal that would be produced by an Earth-mass planet in the HZ. Results. We find that the photometric contributions of spots and plages to the RV signal partially balance each other out, so that the residual signal is comparable to the spot signal. However, the plage contribution due to the convective blueshift attenuation dominates the total signal, with an amplitude over the solar cycle of about 8-10 m/s. Short-term variations are also significantly greater than the spot and plage photometric contribution. This contribution is very strongly correlated with the Ca index on the long term, which may be a way to distinguish between stellar activity and a planet. Conclusions. Providing a very good temporal sampling and signal-to-noise ratio, the photometric contribution of plages and spots should not prevent detection of Earth-mass planets in the HZ. However, the convection contribution makes such a direct detection impossible, unless its effect can be corrected for by methods that still need to be found. We show that it is possible to identify the convection contribution if the sensitivity is good enough, for example, by using activity indicators.