This paper presents the dynamic model of multibody systems driven by electric motors, the so-called electromechanical systems. The mechanical systems considered in this study include an open loop and/or a closed loop, a full-actuated and an under-actuated one. The dynamic model of this electromechanical systems is established in matrix form by applying the Lagrangian equation with and without multipliers and substructure method. With this approach it is easy to obtain the differential equation of motion of the electro-mechanical systems based on the corresponding differential equations of the purely available mechanical system. These obtained equations describe the electromechanical systems in engineering better than in case the systems are purely described by mechanical equations. The differential equations of serial and parallel manipulators, slider-crank mechanism, and overhead crane driven by electric motors are established as illustrated examples. In addition, a simplified dynamic model obtained by neglecting of current variation is also validated by numerical simulation.