Abstract. The classical approach to investigating polynomial eigenvalue problems is linearization, where the polynomial is converted into a larger matrix pencil with the same eigenvalues. For any polynomial there are infinitely many linearizations with widely varying properties, but in practice the companion forms are typically used. However, these companion forms are not always entirely satisfactory, and linearizations with special properties may sometimes be required.Given a matrix polynomial P , we develop a systematic approach to generating large classes of linearizations for P . We show how to simply construct two vector spaces of pencils that generalize the companion forms of P , and prove that almost all of these pencils are linearizations for P . Eigenvectors of these pencils are shown to be closely related to those of P . A distinguished subspace is then isolated, and the special properties of these pencils are investigated. These spaces of pencils provide a convenient arena in which to look for structured linearizations of structured polynomials, as well as to try to optimize the conditioning of linearizations [7], [8], [12].
Many applications give rise to nonlinear eigenvalue problems with an underlying structured matrix polynomial. In this paper several useful classes of structured polynomials (e.g., palindromic, even, odd) are identified and the relationships between them explored. A special class of linearizations which reflect the structure of these polynomials, and therefore preserve symmetries in their spectra, is introduced and investigated. We analyze the existence and uniqueness of such linearizations and show how they may be systematically constructed.
We discuss the state of the art in numerical solution methods for large scale polynomial or rational eigenvalue problems. We present the currently available solution methods such as the Jacobi-Davidson, Arnoldi or the rational Krylov method and analyze their properties. We briefly introduce a new linearization technique and demonstrate how it can be used to improve structure preservation and with this the accuracy and efficiency of linearization based methods. We present several recent applications where structured and unstructured nonlinear eigenvalue problems arise and some numerical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.