Linear time-varying differential-algebraic equations with symmetries are studied. The structures that we address are self-adjoint and skew-adjoint systems. Local and global canonical forms under congruence are presented and used to classify the geometric properties of the flow associated with the differential equation as symplectic or generalized orthogonal flow. As applications, the results are applied to the analysis of dissipative Hamiltonian systems arising from circuit simulation and incompressible flow.
We study over-and underdetermined systems of nonlinear di篓erential-algebraic equations. Such equations arise in many applications in circuit and multibody system simulation, in particular when automatic model generation is used, or in the analysis and solution of control problems in the behavior framework.We give a general (local) existence and uniqueness theory and apply the results to analyze when nonlinear implicit control problems can be made regular by state or output feedback.The theoretical analysis also leads immediately to numerical methods for the simulation as well as the construction of regularizing feedbacks.
We study optimal control problems for general unstructured nonlinear differential-algebraic equations of arbitrary index. In particular, we derive necessary conditions in the case of linear-quadratic control problems and extend them to the general nonlinear case. We also present a Pontryagin maximum principle for general unstructured nonlinear DAEs in the case of restricted controls. Moreover, we discuss the numerical solution of the resulting two-point boundary value problems and present a numerical example.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.