Signatures of dark matter in celestial objects have become of increasing interest due to their powerful detection prospects. To test any of these signatures, the fundamental quantity needed is the rate in which dark matter is captured by celestial objects. Depending on whether dark matter is light, heavy, or comparable in mass to the celestial-body scattering targets, there are different considerations when calculating the capture rate. Furthermore, if dark matter has strong or weak interactions, the physical behaviour important for capture varies. Using both analytic approximations and simulations, we demonstrate how to treat dark matter capture in a range of celestial objects for arbitrary dark matter mass and interaction strength. We release our calculation framework as a public package available in both Python and Mathematica versions, called Asteria.