Heparin is an anionic polysaccharide widely used in clinics as an anticoagulant. However, heparin usage requires an antidote and sensors for safe operation during and after surgeries. In this study, a host-guest complex capable of selective heparin binding and sensing is presented. Heparin binding affinity was studied in solution with a variety of polycationic macrocyclic hosts, a pillar[5]arene and multiple resorcin[4]arenes, by dynamic light scattering, dye displacement assay, isothermal titration calorimetry, and anti-Xa assay. The measurements reveal the significant importance of multivalency in electrostatic host-heparin binding in competitive, application-relevant media. Additionally, to monitor the heparin concentration, a host-guest indicator displacement assay was performed by following the free and bound state of the methyl orange dye in UV-Vis spectroscopic experiments. Furthermore, this colorimetric sensing based on the tertiary host-guest-heparin supramolecular assembly was utilized in the construction of a calibration curve in a range of blood plasma concentrations.