The paper concerns robustness with respect to uncertain loading in topology optimization problems. Using a game theoretic framework we formulate problems, or games, defining generalized Nash equilibria. In each game a set of topology design variables aim to find an optimal topology, while a set of load variables aim to find the worst possible load. Several numerical examples with uncertain loading are solved in 2D and 3D. The games are formulated using global stress, mass and compliance as objective functions or constraints.