During embryogenesis, drosophila embryos undergo epithelial folding and unfolding, which leads to a hole in the dorsal epidermis, transiently covered by an extraembryonic tissue called the amnioserosa. Dorsal closure (DC) consists of the migration of lateral epidermis towards the midline, covering the amnioserosa. It has been extensively studied since numerous physical mechanisms and signaling pathways present in DC are conserved in other morphogenetic events and wound healing in many other species (including vertebrates). We present here a simple mathematical model for DC that involves a reduced number of parameters directly linked to the intensity of the forces in the presence and which is applicable to a wide range of geometries of the leading edge (LE). This model is a natural generalization of the very interesting model proposed in Hutson et al. (2003). Being based on an ordinary differential equation (ODE) approach, the previous model had the advantage of being even simpler, but this restricted significantly the variety of geometries that could be considered and thus the number of modified dorsal closures that could be studied. A partial differential equation (PDE) approach, as the one developed here, allows considering much more general situations that show up in genetically or physically perturbed embryos and whose study will be essential for a proper understanding of the different components of the DC process. Even for native embryos, our model has the advantage of being applicable since an early stages of DC when there is no antero-posterior symmetry (approximately verified only in the late phases of DC). We validate our model in a native setting and also test it further in embryos where the zipping force is perturbed through the expression of spastin (a microtubule severing protein). We obtain variations of the force coefficients that are consistent with what was previously described for this setting.
SUMMARYIn the present work, multidisciplinary optimization is formulated in the game theory framework. We choose a coupled heat transfer-thermoelastic system as the case study for which a topology design approach is developed. The multidisciplinary optimization problem is solved as a non-cooperative game and we determine a Nash equilibrium. The game has two players and the parameterization of the design domain is such that the design variables describe the material density and a parameter which influences the heat flow by convection to the surrounding fluid. The first player controls the structure and the second player controls the temperature distribution in the structure. For the second player, we present mathematical proof of existence of a discrete valued optimal solution and it is concluded that no regularization of the suboptimization problem is needed. We present two numerical examples which illustrate the proposed methodology. One of the examples is also solved by weighting the objectives to a scalar valued objective function and the result is compared with the Nash game solution.
We consider the Cauchy problem for an elliptic operator, formulated as a Nash game. The overspecified Cauchy data are split between two players: the first player solves the elliptic equation with the Dirichlet part of the Cauchy data prescribed over the accessible boundary and a variable Neumann condition (which we call first player's strategy) prescribed over the inaccessible part of the boundary. The second player makes use correspondingly of the Neumann part of the Cauchy data, with a variable Dirichlet condition prescribed over the inaccessible part of the boundary. The first player then minimizes the gap related to the nonused Neumann part of the Cauchy data, and so does the second player with a corresponding Dirichlet gap. The two costs are coupled through a difference term. We prove that there always exists a unique Nash equilibrium, which turns out to be the reconstructed data when the Cauchy problem has a solution. We also prove that the completion Nash game has a stable solution with respect to noisy data. Some numerical two-and three-dimensional experiments are provided to illustrate the efficiency and stability of our algorithm.
Game theory finds nowadays a broad range of applications in engineering and machine learning. However, in a derivative-free, expensive black-box context, very few algorithmic solutions are available to find game equilibria. Here, we propose a novel Gaussian-process based approach for solving games in this context. We follow a classical Bayesian optimization framework, with sequential sampling decisions based on acquisition functions. Two strategies are proposed, based either on the probability of achieving equilibrium or on the Stepwise Uncertainty Reduction paradigm. Practical and numerical aspects are discussed in order to enhance the scalability and reduce computation time. Our approach is evaluated on several synthetic game problems with varying number of players and decision space dimensions. We show that equilibria can be found reliably for a fraction of the cost (in terms of black-box evaluations) compared to classical, derivative-based algorithms. The method is available in the R package GPGame available on CRAN at https://cran.r-project.org/package=GPGame.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.