InsuYcient blood supply during acute infarction and chronic ischemia leads to tissue hypoxia which can signiWcantly alter gene expression patterns in the heart. In contrast to most mammals, some teleost Wshes are able to adapt to extremely low oxygen levels. We describe here that chronic constant hypoxia (CCH) leads to a smaller ventricular outXow tract, reduced lacunae within the central ventricular cavity and around the trabeculae and an increase in the number of cardiac myocyte nuclei per area in the hearts of two teleost species, zebraWsh (Danio rerio) and cichlids (Haplochromis piceatus). In order to identify the molecular basis for the adaptations to CCH, we proWled the gene expression changes in the hearts of adult zebraWsh. We have analyzed over 15,000 diVerent transcripts and found 376 diVerentially regulated genes, of which 260 genes showed increased and 116 genes decreased expression levels. Two notch receptors (notch-2 and notch-3) as well as regulatory genes linked to cell proliferation were transcriptionally upregulated in hypoxic hearts. We observed a simultaneous increase in expression of IGF-2 and IGFbp1 and upregulation of several genes important for the protection against reactive oxygen species (ROS). We have identiWed here many novel genes involved in the response to CCH in the heart, which may have potential clinical implications in the future.