2019
DOI: 10.1002/app.48770
|View full text |Cite
|
Sign up to set email alerts
|

Multifunctional temperature‐responsive polymers as advanced biomaterials and beyond

Abstract: The versatility and applicability of thermoresponsive polymeric systems have led to great interest and a multitude of publications. Of particular significance, multifunctional poly(N‐isopropylacrylamide) (PNIPAAm) systems based on PNIPAAm copolymerized with various functional comonomers or based on PNIPAAm combined with nanomaterials exhibiting unique properties. These multifunctional PNIPAAm systems have revolutionized several biomedical fields such as controlled drug delivery, tissue engineering, self‐healin… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
41
0
2

Year Published

2020
2020
2023
2023

Publication Types

Select...
7

Relationship

1
6

Authors

Journals

citations
Cited by 62 publications
(48 citation statements)
references
References 111 publications
(153 reference statements)
0
41
0
2
Order By: Relevance
“…B. zu ¾nderungen des Aggregatzustands,der Farbe und der Sprçdigkeit führen, weshalb der Einfluss der Te mperatur und das Anpassungsverhalten des Materials unbedingt berücksichtigt werden müssen. [58][59][60][61] Tatsächlich wurden verschiede-ne wärmeempfindliche Materialien durch die Synthese von Verbundwerkstoffen/Polymeren/Hydrogelen entwickelt (z. B. Poly(N-substituierte (Meth)acrylamide), Polyoxazoline,P olyether,P olycaprolactone,P olyphosphazene oder Polypeptide), [62] die eine untere oder obere kritische Lçsungstemperatur (LCST bzw.U CST), eine thermochrome Komponente, ein temperaturabhängiges Selbstorganisationsverhalten oder thermoresponsive Additive wie (Leuko-)Farbstoffe,Q uantenpunkte oder anorganische thermochrome Komplexe aufweisen.…”
Section: Thermoresponsive Materialienunclassified
“…B. zu ¾nderungen des Aggregatzustands,der Farbe und der Sprçdigkeit führen, weshalb der Einfluss der Te mperatur und das Anpassungsverhalten des Materials unbedingt berücksichtigt werden müssen. [58][59][60][61] Tatsächlich wurden verschiede-ne wärmeempfindliche Materialien durch die Synthese von Verbundwerkstoffen/Polymeren/Hydrogelen entwickelt (z. B. Poly(N-substituierte (Meth)acrylamide), Polyoxazoline,P olyether,P olycaprolactone,P olyphosphazene oder Polypeptide), [62] die eine untere oder obere kritische Lçsungstemperatur (LCST bzw.U CST), eine thermochrome Komponente, ein temperaturabhängiges Selbstorganisationsverhalten oder thermoresponsive Additive wie (Leuko-)Farbstoffe,Q uantenpunkte oder anorganische thermochrome Komplexe aufweisen.…”
Section: Thermoresponsive Materialienunclassified
“…Smart polymers are very attractive materials in the field of biological applications because they show sharp phase transition changes with various stimuli such as pH, temperature, light, humidity, and so on [ 1 , 2 , 3 , 4 , 5 ]. However, single-stimuli responsive polymers are not always easy to apply in the body where various conditions exist, such as temperature, pH, ionic concentration, electricity, and so on [ 6 , 7 ]. Thus, a multi-stimuli responsive polymer becomes an attractive polymer to accomplish the desired result in a complex physiological microenvironment [ 6 , 7 ].…”
Section: Introductionmentioning
confidence: 99%
“…However, single-stimuli responsive polymers are not always easy to apply in the body where various conditions exist, such as temperature, pH, ionic concentration, electricity, and so on [ 6 , 7 ]. Thus, a multi-stimuli responsive polymer becomes an attractive polymer to accomplish the desired result in a complex physiological microenvironment [ 6 , 7 ]. It has broad applications such as biomimetics, drug delivery, soft actuators and robots, functional materials for 4D printing, etc.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…[5,6] The polymeric biomaterials are considered suitable due to their easy processability, reasonable price, and easy availability with appropriate physicochemical, mechanical, interfacial, and biomimetic properties in comparison to the other biomaterials. [7][8][9][10][11] Polymeric materials are able to form a wide range of different nanoparticulate structures, which can improve the therapeutic capability to fulfill the demands of modern medicine to cure different diseases such as cancer. [12][13][14][15][16][17][18][19][20] The polymeric nanoparticles have played a significant role in the development of more effective drug delivery systems.…”
Section: Introductionmentioning
confidence: 99%