Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background: Hereditary factors contributed to breast cancer susceptibility. Low BRCA mutation prevalence was demonstrated in previous BRCA mutation screening in Chinese breast cancer patients.Multiple-gene sequencing may assist in discovering detrimental germline mutation in BRCA-negative breast cancers.Methods: A total of 384 Chinese subjects with any two of high-risk factors were recruited and screened by next-generation sequencing (NGS) for 30 cancer susceptible genes. Variants with a truncating, initiation codon or splice donor/acceptor effect, or with pathogenicity demonstrated in published literature were classified into pathogenic/likely-pathogenic mutations.Results: In total, we acquired 39 (10.2%) patients with pathogenic/likely-pathogenic germline mutations, including one carrying two distinct mutations. Major mutant non-BRCA genes were MUTYH (n=11, 2.9%), PTCH1 (n=7, 1.8%), RET (n=6, 1.6%) and PALB2 (n=5, 1.3%). Other mutant genes included TP53 (n=3, 0.8%), RAD51D (n=2, 0.5%), CHEK2 (n=1, 0.3%), BRIP1 (n=1, 0.3%), CDH1 (n=1, 0.3%), MRE11 (n=1, 0.3%), RAD50 (n=1, 0.3%) and PALLD (n=1, 0.3%). A splicing germline mutation, MUTYH c.934-2A>G, was a hotspot (9/384, 2.3%) in Chinese breast cancer.Conclusions: Among BRCA-negative breast cancer patients with high hereditary risk in China, 10.2% carried mutations in cancer associated susceptibility genes. MUTYH and PTCH1 had relatively high mutation rates (2.9% and 1.8%). Multigene testing contributes to understand genetic background of BRCAnegative breast cancer patients with high hereditary risk.
Background: Hereditary factors contributed to breast cancer susceptibility. Low BRCA mutation prevalence was demonstrated in previous BRCA mutation screening in Chinese breast cancer patients.Multiple-gene sequencing may assist in discovering detrimental germline mutation in BRCA-negative breast cancers.Methods: A total of 384 Chinese subjects with any two of high-risk factors were recruited and screened by next-generation sequencing (NGS) for 30 cancer susceptible genes. Variants with a truncating, initiation codon or splice donor/acceptor effect, or with pathogenicity demonstrated in published literature were classified into pathogenic/likely-pathogenic mutations.Results: In total, we acquired 39 (10.2%) patients with pathogenic/likely-pathogenic germline mutations, including one carrying two distinct mutations. Major mutant non-BRCA genes were MUTYH (n=11, 2.9%), PTCH1 (n=7, 1.8%), RET (n=6, 1.6%) and PALB2 (n=5, 1.3%). Other mutant genes included TP53 (n=3, 0.8%), RAD51D (n=2, 0.5%), CHEK2 (n=1, 0.3%), BRIP1 (n=1, 0.3%), CDH1 (n=1, 0.3%), MRE11 (n=1, 0.3%), RAD50 (n=1, 0.3%) and PALLD (n=1, 0.3%). A splicing germline mutation, MUTYH c.934-2A>G, was a hotspot (9/384, 2.3%) in Chinese breast cancer.Conclusions: Among BRCA-negative breast cancer patients with high hereditary risk in China, 10.2% carried mutations in cancer associated susceptibility genes. MUTYH and PTCH1 had relatively high mutation rates (2.9% and 1.8%). Multigene testing contributes to understand genetic background of BRCAnegative breast cancer patients with high hereditary risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.