“…A major tool for dimension reduction is the functional principal component analysis (FPCA) for modeling functional variability in the data in lower dimensions (Wang et al, 2016;Yao et al, 2012;Cardot, 2007). Recent literature on FPCA models complex dependencies among the functional observations that are observed in close proximity with respect to time or space (Chen and Müller, 2012;Greven et al, 2010;Crainiceanu et al, 2009;Di et al, 2009;Hasenstab et al, 2017;Scheffler et al, 2020;Campos et al, 2022;Zipunnikov et al, 2011;Baladandayuthapani et al, 2008;Staicu et al, 2010). Bayesian FPCA (BFPCA) offers uncertainty quantification on the functional model components, including the mean and eigenfunctions, via credible intervals, without the need for bootstrap.…”