Electroencephalography experiments produce region-referenced functional data representing brain signals in the time or the frequency domain collected across the scalp. The data typically also have a multilevel structure with high-dimensional observations collected across multiple experimental conditions or visits. Common analysis approaches reduce the data complexity by collapsing the functional and regional dimensions, where event-related potential (ERP) features or band power are targeted in a pre-specified scalp region.This practice can fail to portray more comprehensive differences in the entire ERP signal or the power spectral density (PSD) across the scalp. Building on the weak separability of the high-dimensional covariance process, the proposed multilevel hybrid principal components analysis (M-HPCA) utilizes dimension reduction tools from both vector and functional principal components analysis to decompose the total variation into between-and within-subject variance. The resulting model components are estimated in a mixed effects modeling framework via a computationally efficient minorization-maximization algorithm coupled with bootstrap. The diverse array of applications of M-HPCA is showcased
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.