Now-a-days, data are generated massively from various sectors such as medical, educational, commercial, etc. Processing these data is a challenging task since the massive data take more time to process and make decision. Therefore, reducing the size of data for processing is a pressing need. The size of the data can be reduced using dimensionality reduction methods. The dimensionality reduction is known as feature selection or variable selection. The dimensionality reduction reduces the number of features present in the dataset by removing the irrelevant and redundant variables to improve the accuracy of the classification and clustering tasks. The classification and clustering techniques play a significant role in decision making. Improving accuracy of classification and clustering is an essential task of the researchers to improve the quality of decision making. Therefore, this paper presents a dimensionality reduction method with wrapper approach to improve the accuracy of classification and clustering. Index Terms-Wrapper-based dimensionality reduction, naï ve Bayes classifier, Random forest classifier, OneR classifier, Variable selection. Resource Management, and Ph. D in Information and Communication Engineering degrees from Anna University, India. He is currently working as a teaching fellow in the Department of Computer Science and Engineering, Anna University, BIT-Campus, Tiruchirappalli, India. His research interests include data mining, wireless networks, parallel computing, mobile computing, computer networks, image processing, software engineering, soft computing, cloud computing, big data analytics, teaching learning process and engineering education, human resource management.