Wireless Body Area Networks (WBANs), low power, and short-range wireless communication in a near-body area provide advantages, particularly in the medical and healthcare sector: (i) they enable continuous monitoring of patients and (ii) the recording and correlation of physical and biological information. Along with the utilization and integration of these (sensitive) private and personal data, there are substantial requirements concerning security and privacy, as well as protection during processing and transmission. Contrary to the star topology frequently used in various standards, the overall concept of a novel low-data rate token-based WBAN framework is proposed. This work further comprises the evaluation of strategies for handling medical data with WBANs and emphasizes the importance and necessity of encryption and security strategies in the context of sensitive information. Furthermore, this work considers the recent advancements in Artificial Intelligence (AI), which are opening up opportunities for enhancing cyber resilience, but on the other hand, also new attack vectors. Moreover, the implications of targeted regulatory measures, such as the European AI Act, are considered. In contrast to, for instance, the proposed star network topologies of the IEEE 802.15.6 WBAN standard or the Technical Committee (TC) SmartBAN of the European Telecommunication Standards Institute (ETSI), the concept of a ring topology is proposed which concatenates information in the form of a ‘data train’ and thus results in faster and more efficient communication. Beyond that, the conductivity of human skin is included in the approach presented to incorporate a supplementary channel. This direct contact requirement not only fortifies the security of the system but also facilitates a reliable means of secure communication, pivotal in maintaining the integrity of sensitive health data. The work identifies different threat models associated with the WBAN system and evaluates potential data vulnerabilities and risks to maximize security. It highlights the crucial balance between security and efficiency in WBANs, using the token-based approach as a case study. Further, it sets a foundation for future healthcare technology advancements, aiming to ensure the secure and efficient integration of patient data.