2013 IEEE International Symposium on Multimedia 2013
DOI: 10.1109/ism.2013.37
|View full text |Cite
|
Sign up to set email alerts
|

Multimodal Sparse Linear Integration for Content-Based Item Recommendation

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
5
0
8

Year Published

2014
2014
2018
2018

Publication Types

Select...
8

Relationship

2
6

Authors

Journals

citations
Cited by 10 publications
(13 citation statements)
references
References 18 publications
0
5
0
8
Order By: Relevance
“…QP Estudos # Q1 [5,7,8,9,16,19,26,27,28,29,30,31] 12 Q2 [5,7,8,9,16,19,23,26,27,28,29,30,31] Em um trabalho de análise mais específico, cada um dos 13 estudos foi detalhadamente analisado para identificação das soluções propostas para construção dos módulos de um SRbC (conforme Figura 1). Os resultados dessa análise estão organizados por módulo nas três próximas seções.…”
Section: Tabela 4: Estudos X Questões De Pesquisa (Qp)unclassified
“…QP Estudos # Q1 [5,7,8,9,16,19,26,27,28,29,30,31] 12 Q2 [5,7,8,9,16,19,23,26,27,28,29,30,31] Em um trabalho de análise mais específico, cada um dos 13 estudos foi detalhadamente analisado para identificação das soluções propostas para construção dos módulos de um SRbC (conforme Figura 1). Os resultados dessa análise estão organizados por módulo nas três próximas seções.…”
Section: Tabela 4: Estudos X Questões De Pesquisa (Qp)unclassified
“…Update the diffusion probability k v,w by using Equation 13 if v appears in any diffusion episodes. Otherwise use Equation 12 to update k v,w .…”
Section: A Variance Regularizationmentioning
confidence: 99%
“…Although such a fact has been known for a while [11], [12], [13], previous research efforts have not addressed the implication of such facts. Therefore, when the methods from [7], [8] is used to estimate the diffusion probabilities, many of the diffusion probabilities are estimated as either 0 or 1.0, which is evidence of overfitting.…”
Section: Introductionmentioning
confidence: 99%
“…In [35], Chen et al propose a fusion strategy to combine ranking scores from both tag-based and content-based models, where the adjustment, reliability, and correlation of ranking scores from different models are all considered. Zhu et al present a Sparse Linear Integration (SLI) model for integrating visual content and its associated metadata (i.e., the content and the context modalities), for the tasks of semantic concept retrieval and content-based video recommendation [36,37]. Furthermore, a method called VideoTopic is proposed for content-based video analysis and recommendation by modeling both textual and visual information [38,39].…”
Section: Multi-modal Multi-layer Fusionmentioning
confidence: 99%