Multimedia data on social websites contain rich semantics and are often accompanied with user-defined tags. To enhance Web media semantic concept retrieval, the fusion of tag-based and content-based models can be used, though it is very challenging. In this article, a novel semantic concept retrieval framework that incorporates tag removal and model fusion is proposed to tackle such a challenge. Tags with useful information can facilitate media search, but they are often imprecise, which makes it important to apply noisy tag removal (by deleting uncorrelated tags) to improve the performance of semantic concept retrieval. Therefore, a multiple correspondence analysis (MCA)-based tag removal algorithm is proposed, which utilizes MCA's ability to capture the relationships among nominal features and identify representative and discriminative tags holding strong correlations with the target semantic concepts. To further improve the retrieval performance, a novel model fusion method is also proposed to combine ranking scores from both tag-based and content-based models, where the adjustment of ranking scores, the reliability of models, and the correlations between the intervals divided on the ranking scores and the semantic concepts are all considered. Comparative results with extensive experiments on the NUS-WIDE-LITE as well as the NUS-WIDE-270K benchmark datasets with 81 semantic concepts show that the proposed framework outperforms baseline results and the other comparison methods with each component being evaluated separately.
Abstract-Content-based multimedia retrieval faces many challenges such as semantic gap, imbalanced data, and varied qualities of the media. Feature selection as a component of the retrieval process plays an important role. The aim of feature selection is to identify a subset of features by removing irrelevant or redundant features. An effective subset of features can not only improve model performance and reduce computational complexity, but also enhance semantic interpretability. To achieve these objectives, in this paper, a novel metric that integrates the correlation and reliability information between each feature and each class obtained from Multiple Correspondence Analysis (MCA) is proposed to score the features for feature selection. Based on these scores, a ranked list of features can be generated and different selection criteria can be adopted to select a subset of features. To evaluate the proposed framework, four other wellknown feature selection methods, namely information gain, chisquare measure, correlation-based feature selection, and relief are compared with the proposed method over five popular classifiers using the benchmark data from TRECVID 2009 highlevel feature extraction task. The results show that the proposed method outperforms the other methods in terms of classification accuracy, the size of feature subspace, and the ability to capture the semantic information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.