The challenge of storing energy efficiently and sustainably is highly prominent within modern scientific investigations. Due to the ongoing trend of miniaturization, the design of expressly quantum storage devices is itself a crucial task within current quantum technological research. Here we provide a transparent analytic model of a two-component quantum battery, composed of a charger and an energy holder, which is driven by a short laser pulse. We provide simple expressions for the energy stored in the battery, the maximum amount of work which can be extracted, both the instantaneous and the average powers, and the relevant charging times. This allows us to discuss explicitly the optimal design of the battery in terms of the driving strength of the pulse, the coupling between the charger and the holder, and the inevitable energy loss into the environment. We anticipate that our theory can act as a helpful guide for the nascent experimental work building and characterizing the first generation of truly quantum batteries.