This paper deals with the lifespan modeling of heterogenous tumors treated by radiotherapy. A bi-scale model describing the cell and tumor lifespans by random variables is proposed. First- and second-order moments as well as the cumulative distribution functions and confidence intervals are expressed for the two lifespans with respect to the model parameters. One interesting result is that the mean value of the tumor lifespan can be approached by a logarithmic function of the initial cancer cell number. Moreover, we show that TCP and NTCP, used in radiotherapy to evaluate, optimize and compare treatment plans, can be derived from the tumor lifespan and the surrounding healthy tissue, respectively. Finally, we propose a ROC curve, entitled ECT (Efficiency-Complication Trade-off), suited to the selection by clinicians of the appropriate treatment planning.