It is frequently the most cost effective option to operate systems and infrastructure over an extended life period rather than enter a new build programme. The condition and performance of existing systems operated beyond their originally intended design life are controlled through maintenance. For new systems there is the option to simultaneously develop the design and the maintenance processes for best effect when a longer life expectancy is planned. This paper reports a combined Petri net and Bayesian network approach to investigate the effects of design and maintenance features on the system performance. The method has a number of features which overcome limitations in traditionally used system performance modelling techniques, such as fault tree analysis, and also enhances the modelling capabilities. Significantly, for the assessment of aging systems, the new method avoids the need to assume a constant failure rate over the lifetime duration. In addition the assumption of independence between component failures events is no longer required. In comparison with the commonly applied system modelling techniques, this new methodology also has the capability to represent the maintenance process in far greater detail and as such options for: inspection and testing, servicing, reactive repair and component replacement based on condition, age or use can all be included. In considering system design options, levels of redundancy and diversity along with the component types selected can be investigated. All of the options for the design and maintenance can be incorporated into a single integrated Petri net and Bayesian network model and turned on and off as required to predict the effects of any combination of options selected. In addition this model has the ability to evaluate different system failure modes.The integrated Petri-net and Bayesian network approach is demonstrated through application to a remote un-manned wellhead platform from the oil and gas industry.