• This is an article from the journal, Proceedings of the IMechE, Part O: Abstract: The use of autonomous systems is becoming increasingly common in many fields. A significant example of this is the ambition to deploy unmanned aerial vehicles (UAVs) for both civil and military applications. In order for autonomous systems such as these to operate effectively, they must be capable of making decisions regarding the appropriate future course of their mission responding to changes in circumstance in as short a time as possible. The systems will typically perform phased missions and, owing to the uncertain nature of the environments in which the systems operate, the mission objectives may be subject to change at short notice. The ability to evaluate the different possible mission configurations is crucial in making the right decision about the mission tasks that should be performed in order to give the highest possible probability of mission success. Because binary decision diagrams (BDDs) may be quickly and accurately quantified to give measures of the system reliability it is anticipated that they are the most appropriate analysis tools to form the basis of a reliability-based prognostics methodology. The current paper presents a new BDD-based approach for phased mission analysis, which seeks to take advantage of the proven fast analysis characteristics of the BDD and enhance it in ways that are suited to the demands of a decision-making capability for autonomous systems. The BDD approach presented allows BDDs representing the failure causes in the different phases of a mission to be constructed quickly by treating component failures in different phases of the mission as separate variables. This allows flexibility when building mission phase failure BDDs because a global variable ordering scheme is not required. An alternative representation of component states in time intervals allows the dependencies to be efficiently dealt with during the quantification process. Nodes in the BDD can represent components with any number of failure modes or factors external to the system that could affect its behaviour, such as the weather. Path simplification rules and quantification rules are developed that allow the calculation of phase failure probabilities for this new BDD approach. The proposed method provides a phased mission analysis technique that allows the rapid construction of reliability models for phased missions and, with the use of BDDs, rapid quantification.
Autonomous systems are being increasingly used in many areas. A significant example is unmanned aerial vehicles (UAVs), regularly being called upon to perform tasks in the military theatre. Autonomous systems can work alone or be called upon to work collaboratively towards common mission objectives. In this case it will be necessary to ensure that the decisions enable the progression of the platform objectives and also the overall mission objectives.The motivation behind the work presented in this paper is the need to be able to predict the failure probability of missions performed by a number of autonomous systems working together. Such mission prognoses can assist the mission planning process in autonomous systems when conditions change, with reconfiguration taking place if the probability of mission failure becomes unacceptably high.In a multiplatform phased mission a number of platforms perform their own phased mission that contributes to an overall mission objective. Presented in this paper is a methodology for calculating the phase failure probabilities of a multiplatform phased mission. These probabilities are then used to find the total mission failure probability. Prior to the mission the failure probabilities are used to decide if the original mission structure is acceptable. Once underway, failure probabilities, updated as circumstances change, are used to decide whether a mission should continue. Circumstances can change owing to failures on a platform, changing environmental conditions (weather), or the occurrence of unforeseen external events (emerging threats). This diagnostics information should be used to ensure that the updated failure probabilities calculated take into account the most up-to-date system information possible. Since the speed of decision making and the accuracy of the information used are essential, binary decision diagrams (BDDs) are utilized to form the basis of a fast, accurate quantification process.
This paper describes the first phase of a research project to identify and initiate the development, or improvement, of tools that are relevant to identifying and managing hazards likely to arise with automatic advice (e.g. system health advice, plus others) within airborne autonomous systems. In this first phase a rigorous approach has been attempted in the development of the systems requirements in the recognition that at least three systems of interest are present in the system of systems space -the airborne systems' regulatory environment, the airborne systems of interest, and the proposed hazard identification and assessment toolbox itself. The approach presented here describes an effective treatment of a literature survey as a textually based requirements analysis process. The textual analysis and a phased Quality Function Deployment (QFD) process are described with a worked example, and placed into context of the (civil) airborne certification and regulatory environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.