The sensitivity of localized surface plasmon resonance (LSPR) of metal nanostructures to adsorbates lends itself to a powerful class of label-free biosensors. Optical properties of plasmonic nanostructures are dependent on the geometrical features and the local dielectric environment. The exponential decay of the sensitivity from the surface of the plasmonic nanotransducer calls for the careful consideration in its design with particular attention to the size of the recognition and analyte layers. In this study, we demonstrate that short peptides as biorecognition elements (BRE) compared to larger antibodies as target capture agents offer several advantages. Using a bioplasmonic paper device (BPD), we demonstrate the selective and sensitive detection of the cardiac biomarker troponin I (cTnI). The smaller sized peptide provides higher sensitivity and a lower detection limit using a BPD. Furthermore, the excellent shelf-life and thermal stability of peptide-based LSPR sensors, which precludes the need for special storage conditions, makes it ideal for use in resource-limited settings.Plasmonic biosensors based on localized surface plasmon resonance (LSPR) are highly attractive for lab-on-chip devices that are cost-effective and used in point-of-care biodiagnostics 1 . LSPR of metal nanostructures is shown to be sensitive enough to differentiate various inert gases (refractive index difference on the order of 3 × 10 −4 refractive index units (RIU)), probe the conformational changes of individual biomacromolecules, detect single biomolecule binding events, monitor the kinetics of catalytic activity of single nanoparticles and even optically detect a single electron [2][3][4][5][6] . In the design of LSPR-based biosensors, two factors are of prime importance: (i) the bulk refractive index sensitivity and the electromagnetic decay length of the nanostructures employed as optical transducers. There have been numerous studies that focus on the design, synthesis and the validation of novel plasmonic nanostructures with high bulk refractive index sensitivity [7][8][9] . However, studies focusing on understanding the effect of the electromagnetic (EM) decay length on the ultimate performance of the LSPR-based biosensor are limited 10,11 . Although the decay in the sensitivity of plasmonic nanostructures with distance has been widely investigated 12,13 , to the best of our knowledge, a direct comparison of the sensitivity of LSPR biosensors based on recognition layers of different sizes (i.e., thickness of the recognition layer) is largely unexplored.