In this research, a localized surface plasmon resonance (LSPR)-based bioanalysis method for developing multiarray optical nanochip suitable for screening bimolecular interactions is described. LSPR-based label-free monitoring enables to solve the problems of conventional methods that require large sample volumes and time-consuming labeling procedures. We developed a multiarray LSPR-based nanochip for the label-free detection of proteins. The multiarray format was constructed by a core-shell-structured nanoparticle layer, which provided 300 nanospots on the sensing surface. Antibodies were immobilized onto the nanospots using their interaction with Protein A. The concentrations of antigens were determined from the peak absorption intensity of the LSPR spectra. We demonstrated the capability of the array measurement using immunoglobulins (IgA, IgD, IgG, IgM), C-reactive protein, and fibrinogen. The detection limit of our label-free method was 100 pg/mL. Our nanochip is readily transferable to monitor the interactions of other biomolecules, such as whole cells or receptors, with a massively parallel detection capability in a highly miniaturized package. We anticipate that the direct label-free optical immunoassay of proteins reported here will revolutionize clinical diagnosis and accelerate the development of hand-held and user-friendly point-of-care devices.
The development of label-free optical biosensors for DNA and other biomolecules has the potential to impact life sciences as well as screening in medical and environmental applications. In this report, we developed a localized surface plasmon resonance (LSPR) based label-free optical biosensor based on a gold-capped nanoparticle layer substrate immobilized with peptide nucleic acids (PNAs). PNA probe was designed to recognize the target DNA related to tumor necrosis factor. The nanoparticle layer was formed on a gold-deposited glass substrate by the surface modified silica nanoparticles using silane-coupling reagent. The optical properties of gold-capped nanoparticle layer substrate were characterized through monitoring the changes in the absorbance strength, as the thickness of the biomolecular layer increased with hybridization. The detection of PNA-DNA hybridization with target oligonucleotides and PCR-amplified real samples were performed with a limit of detection value of 0.677 pM target DNA. Selective discrimination against a single-base mismatch was also achieved. Our LSPR-based biosensor with the gold-capped nanoparticle layer substrate is applicable to the design of biosensors for monitoring of the interaction of other biomolecules, such as proteins, whole cells, or receptors with a massively parallel detection capability in a highly miniaturized package.
We present the first electrochemical detection, characterization, and kinetic study of the aggregation of Alzheimer's disease (AD) amyloid beta peptides (Abeta-40, Abeta-42) using three different voltammetric techniques at a glassy carbon electrode (GCE). This method is based on detecting changes in the oxidation signal of tyrosine (Tyr) residue. As the peptides aggregate, there are structure conformational changes, which affect the degree of exposure of Tyr to the molecular surface of the peptides. The results show significant differences in the aggregation process between the two peptides, and these correlate highly with established techniques. The method is rapid and label-free, and the principle can be universally applied to other protein aggregation studies related to diseases, such as Huntington's, Parkinson's, and Creutzfeldt Jacob (CJD). This method could also be explored in screening for the effectiveness of AD therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.