2015
DOI: 10.1016/j.neucom.2014.08.043
|View full text |Cite
|
Sign up to set email alerts
|

Multiple optimal learning factors for the multi-layer perceptron

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
9
0
1

Year Published

2015
2015
2022
2022

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 16 publications
(10 citation statements)
references
References 24 publications
0
9
0
1
Order By: Relevance
“…The size of SHL in 2LP for the problem of classifying SDM6080I can be preset up to 240 neurons. It is an adequate SHL size for GT 5, and such size ensures reasonable speed and accuracy [3], [6], [10], [11], [13]. Then 2LP configuration is 4800-240-26 (input layer neuron number -SHL neuron numberoutput layer neuron number), and this 4800-240-26 perceptron (4800-240-26-P) is initialised on MATLAB Neural Network Toolbox simply with function "feedforwardnet" or "newff".…”
Section: Number Of Neurons In Perceptron Hidden Layersmentioning
confidence: 99%
See 1 more Smart Citation
“…The size of SHL in 2LP for the problem of classifying SDM6080I can be preset up to 240 neurons. It is an adequate SHL size for GT 5, and such size ensures reasonable speed and accuracy [3], [6], [10], [11], [13]. Then 2LP configuration is 4800-240-26 (input layer neuron number -SHL neuron numberoutput layer neuron number), and this 4800-240-26 perceptron (4800-240-26-P) is initialised on MATLAB Neural Network Toolbox simply with function "feedforwardnet" or "newff".…”
Section: Number Of Neurons In Perceptron Hidden Layersmentioning
confidence: 99%
“…Pixel-to-shift standard deviation ratio (PSSDR) in (3) was the constant for the given 2LP and SDO classification problem. It was stated that the better PSSDR (3) was adjusted [12], [13] the lower CEP was going to be performed by 2LP in classifying SDO, modelled here as SDM6080I. Under ; rr is to be evaluated rather than approximated.…”
mentioning
confidence: 99%
“…Los pesos de entra-Determinación del estado de maduración de frutos de feijoa mediante un sistema de visión por computador utilizando información de color da conectan con cada una de las neuronas de la capa oculta y los pesos de salida conectan con la activación de cada una de las salidas. Los datos de entrenamiento son descritos por el conjunto de elementos en la capa de entrada lo cual conforma un vector de entrada N-dimensional, y los vectores de salida M-dimensionales en función de las clases o conjuntos deseados (Malaur, Manry, & Jesudhas, 2015). Ellas se han utilizado ampliamente en aplicaciones de regresión y clasificación en áreas como: estimación de parámetros, análisis de documentos y reconocimiento, finanzas, fabricación y minería de datos.…”
Section: Clasificadoresunclassified
“…It is a distributed paradigm, which seeks to simulate the collective behavior of unsophisticated individuals interacting locally with their environment to efficiently identify optimum solutions in complex search spaces. There are many related works of research [22][23][24][25] which show that the BBO algorithm is a type of evolutionary algorithm which can offer a specific evolutionary mechanism for each individual in a population. This mechanism makes the BBO algorithm more successful and robust on nonuniform training procedures than gradient-based algorithms.…”
Section: Introductionmentioning
confidence: 99%