We have previously reported a novel CD45-positive cell population called peripheral blood insulin-producing cells (PB-IPCs) and its unique potential for releasing insulin in vitro. Despite the CD45-positive phenotype and self-renewal ability, PB-IPCs are distinguished from hemopoietic and endothelial progenitor cells (EPCs) by some characteristics, such as a CD34-negative phenotype and different culture conditions. We have further identified the gene profiles of the embryonic and neural stem cells, and these profiles include Sox2, Nanog, c-Myc, Klf4, Notch1 and Mash1. After treatment with all-trans retinoic acid (ATRA) in vitro, most PB-IPCs exhibited morphological changes that included the development of elongated and branched cell processes. In the process of induction, the mRNA expression of Hes1 was robustly upregulated, and a majority of cells acquired some astrocyte-associated specific phenotypes including anti-glial fibrillary acidic protein (GFAP), CD44, Glutamate-aspartate transporter (GLAST) and S100β. In spite of the deficiency of glutamate uptaking, the differentiated cells significantly relaxed the regulation of the expression of brain-derived neurotrophic factor (BDNF) mRNA. This finding demonstrates that PB-IPCs could be induced into a population of astrocyte-like cells and enhanced the neurotrophic potential when the state of proliferation was limited by ATRA, which implies that this unique CD45+ cell pool may have a protective role in some degenerative diseases of the central nervous system (CNS).