“…ε n dp (2π) n f (εp) φ(k − p) , and thereforeP (x, εD x )f x ε φ(x) = R n dk (2π) n e ix•k P (x, εk) f n e ix•k P (x, εk) R n ε n dp (2π) n f (εp) φ(k − p) = R n dk (2πε) n e i x ε •k P (x, k) y ε •(k−p) φ(y)dy = R n e −i( x ε −y)•(k−p) φ(x − εy)ε n dy ,so that one finally hasP (x, εD x )f n e i x ε •k P (x, k) R n dp (2π) n f (p) R n x ×R n y e −i( x ε −y)•(k−p) φ(x−εy)ψ(x)ε n dydx = n e i x ε •p f (p)W ε [φ, ψ](x, k − p) ,which when identified with (78) gives the claimed result. Regarding(24), it now suffices to observe thatW ε f x ε P (x, εD x )φ, ψ = R n dp (2π) n e i x ε •p f (p)W ε [P (x, εD x )φ, ψ](x, k − p) = R n dp (2π) n e i x ε •p f (p)P (x, k − p)W ε [φ, ψ](x, k − p) + O(ε) ,…”