We propose a regularized least-squares method for reconstructing 2D velocity vector fields within the left ventricular cavity from single-view color Doppler echocardiographic images. Vector flow mapping is formulated as a quadratic optimization problem based on an [Formula: see text]-norm minimization of a cost function composed of a Doppler data-fidelity term and a regularizer. The latter contains three physically interpretable expressions related to 2D mass conservation, Dirichlet boundary conditions, and smoothness. A finite difference discretization of the continuous problem was adopted in a polar coordinate system, leading to a sparse symmetric positive-definite system. The three regularization parameters were determined automatically by analyzing the L-hypersurface, a generalization of the L-curve. The performance of the proposed method was numerically evaluated using (1) a synthetic flow composed of a mixture of divergence-free and curl-free flow fields and (2) simulated flow data from a patient-specific CFD (computational fluid dynamics) model of a human left heart. The numerical evaluations showed that the vector flow fields reconstructed from the Doppler components were in good agreement with the original velocities, with a relative error less than 20%. It was also demonstrated that a perturbation of the domain contour has little effect on the rebuilt velocity fields. The capability of our intraventricular vector flow mapping (iVFM) algorithm was finally illustrated on in vivo echocardiographic color Doppler data acquired in patients. The vortex that forms during the rapid filling was clearly deciphered. This improved iVFM algorithm is expected to have a significant clinical impact in the assessment of diastolic function.
This paper is concerned with the development of imaging methods to localize sources or reflectors in inhomogeneous moving media with acoustic waves that have travelled through them. A typical example is the localization of broadband acoustic sources in a turbulent jet flow for aeroacoustic applications. The proposed algorithms are extensions of Kirchhoff migration (KM) and coherent interferometry (CINT) which have been considered for smooth and randomly inhomogeneous quiescent media so far. They are constructed starting from the linearized Euler equations for the acoustic perturbations about a stationary ambient flow. A model problem for the propagation of acoustic waves generated by a fixed point source in an ambient flow with constant velocity is addressed. Based on this result imaging functions are proposed to modify the existing KM and CINT functions to account for the ambient flow velocity. They are subsequently tested and compared by numerical simulations in various configurations, including a synthetic turbulent jet representative of the main features encountered in actual jet flows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.