Theoretical methods have become indispensable tools in many fields of chemistry and materials research. Metal-organic frameworks (MOFs) are porous materials; they have been intensively developed due to their diverse properties suitable for a wide range of applications. Theoretical approaches have thus been frequently employed toward the design and characterization of MOFs. We focus here in particular on theoretical studies of single-site catalytic reactions that occur inside the cavities of MOFs. The density functional method (DFT) has been the main approach used for such studies. We briefly review the uses of DFT to examine the catalytic reactions in MOFs. We note that DFT methods are versatile and can be made to work for different purposes such as, e.g., force-field development for molecular simulations. We shall, however, cover this field only very succinctly to put it into context with our main topic.