Ultrafine palladium nanoparticles (Pd NPs) with 8 and 3 nm sizes were effectively fabricated in triazine functionalized porous organic polymer (POP) TRIA that was developed by nonaqueous polymerization of 2,4,6-triallyoxy-1,3,5-triazine. The Pd NPs encapsulated POP (Pd-POP) was fully characterized using several techniques. Further studies revealed an excellent capability of Pd-POP for catalytic transfer hydrogenation of alkenes at room temperature with superior catalytic performance and high selectivity of desired products. Highly flammable H2 gas balloon at high pressure and temperature used in conventional hydrogenation reactions was not needed in the present synthetic system. Catalytic activity is strongly dependent on the size of encapsulated Pd NPs in the POP. The Pd-POP catalyst with Pd NPs of 8 nm in diameter exhibited higher catalytic activity for alkene hydrogenation as compared with the Pd-POP catalyst encapsulating 3 nm Pd NPs. Computational studies were undertaken to gain insights into different catalytic activities of these two Pd-POP catalysts. High reusability and stability as well as no Pd leaching of these Pd-POP catalysts make them highly applicable for hydrogenation reactions at room temperature.
A novel strategy has been adopted for the construction of a copolymer of benzene-benzylamine-1 (BBA-1), which is a porous organic polymer (POP) with a high BET surface area, through Friedel-Crafts alkylation of benzylamine and benzene by using formaldehyde dimethyl acetal as a cross-linker and anhydrous FeCl3 as a promoter. Ruthenium nanoparticles (Ru NPs) were successfully distributed in the interior cavities of polymers through NaBH4, ethylene glycol, and hydrothermal reduction routes, which delivered Ru-A, Ru-B, and Ru-C materials, respectively, and avoided aggregation of metal NPs. Homogeneous dispersion, the nanoconfinement effect of the polymer, and the oxidation state of Ru NPs were verified by employing TEM, energy-dispersive X-ray spectroscopy mapping, cross polarization magic-angle spinning (13)C NMR spectroscopy, and X-ray photoelectron spectroscopy analytical tools. These three new Ru-based POP materials exhibited excellent catalytic performance in the hydrogenation of nitroarenes at RT (with a reaction time of only ≈ 30 min), with high conversion, selectivity, stability, and recyclability for several catalytic cycles, compared with other traditional materials, such as Ru@C, Ru@SiO2, and Ru@TiO2, but no clear agglomeration or loss of catalytic activity was observed. The high catalytic performance of the ruthenium-based POP materials is due to the synergetic effect of nanoconfinement and electron donation offered by the 3D POP network. DFT calculations showed that hydrogenation of nitrobenzene over the Ru (0001) catalyst surface through a direct reaction pathway is more favorable than that through an indirect reaction pathway.
We performed ONIOM QM/MM calculations to understand how ethane is hydroxylated and ethanol is converted to acetaldehyde by an oxoiron(IV) species generated within an iron-containing metal−organic framework called Fe-MOF-74. The calculations showed that the ethane hydroxylation proceeds via a high-spin rebound mechanism. The conversion of ethanol into acetaldehyde should occur more favorably via H-abstraction from the O−H bond than via C−H cleavage, although the O−H bond of ethanol is stronger than the C(1)−H bond. This trend can be rationalized by the effect of proton-coupled electron transfer, which stabilizes the transition state for O−H cleavage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.