Purpose
The purpose of this paper is to predict and control the composition during laser additive manufacturing, since composition control is important for parts manufactured by laser additive manufacturing. Aluminum and steel functionally graded material (FGM) were manufactured by laser metal deposition, and the composition was analyzed by means of spectral analysis simultaneously.
Design/methodology/approach
The laser metal deposition process was carried out on a 5 mm thick 316L plate. Spectral line intensity ratio and plasma temperature were chosen as two main spectroscopic diagnosis parameters to predict the compositional variation. Single-trace single-layer experiments and single-trace multi-layer experiments were done, respectively, to test the feasibility of the spectral diagnosis method.
Findings
Experiment results showed that with the composition of metal powder changing from steel to aluminum, the spectral intensity ratio of the characteristic spectral line is proportional to the elemental content in the plasma. When the composition of deposition layers changed, the characteristic spectrum line intensity ratio changed obviously. And the linear chemical composition analysis results confirmed the gradient composition variation of the additive manufacturing parts. The results verified the feasibility of composition analysis based on spectral information in the laser additive manufacturing process.
Originality/value
The composition content of aluminum and steel FGM was diagnosed by spectral information during laser metal deposition, and the relationship between spectral intensity and composition was established.