| Environmental enteric dysfunction (EED) is a disease of the small intestine affecting children and adults in low and middle income countries. Arising as a consequence of repeated infections, gut inflammation results in impaired intestinal absorptive and barrier function, leading to poor nutrient uptake and ultimately to stunting and other developmental limitations. Progress towards new biomarkers and interventions for EED is hampered by the practical and ethical difficulties of cross-validation with the gold standard of biopsy and histology. Optical biopsy techniques -which can provide minimally invasive or noninvasive alternatives to biopsy -could offer other routes to validation and could potentially be used as point-of-care tests among the general population. This Consensus Statement identifies and reviews the most promising candidate optical biopsy technologies for applications in EED, critically assesses them against criteria identified for successful deployment in developing world settings, and proposes further lines of enquiry. Importantly, many of the techniques discussed could also be adapted to monitor the impaired intestinal barrier in other settings such as IBD, autoimmune enteropathies, coeliac disease, graft-versus-host disease, small intestinal transplantation or critical care. Members of the board and experts met to discuss the horizon scan in London, UK, in November 2015 and San Francisco, USA, in February 2016. Literature searches were performed using Web of Science, as well as through the advice of the advisory board and experts. The results of the horizon scan are presented in this Consensus Statement, which entails a review of EED, a discussion of technologies deemed relevant to EED (based on literature searches and the opinions of the advisory board and experts), and a series of recommendations for the future application of the rele vant technologies to the study and diagnosis of EED. In the Recommendations section, each technology has been assessed according to its suitability for application to EED and this assessment includes an evaluation of the cost, invasiveness and appropriateness for developing countries of each device and/or technique. This assessment was performed in a qualitative manner based on currently available information (for example, the present cost and size of the devices) and the opinions of the authors as to feasible future develop ment. Technique suitability for use in developing countries was determined in a qualitative manner after consideration of the need for advanced infrastructure and high levels of training for either system use or data analysis. Probable deployment time scales have also been assigned to each technique based on the current states of development and the degree of valid ation work that will be required before application to EED. These timescales have been tentatively defined as short-term (suitable for deployment immediately or within ~1 year), mediumterm (suit able for deployment within ~1-3 years) and long-term (suitable for deployme...