For a complete description of the electronic motion in a quantum dot, we need a method that can describe not only the trajectory behavior of the electron but also its probabilistic wave behavior. Quantum Hamilton mechanics, which possesses the desired ability of manifesting the wave-particle duality of electrons moving in a quantum dot, is introduced in this chapter to recover the quantum-mechanical meanings of the classical terms such as backscattering and commensurability and to give a quantum-mechanical interpretation of the observed oscillation in the magneto-resistance curve. Solutions of quantum Hamilton equations reveal the existence of electronic standing waves in a quantum dot, whose occurrence is found to be accompanied by a jump in the electronic resistance. The comparison with the experimental data shows that the predicted locations of the resistance jump match closely with the peaks of the measured magneto-resistance.